Emergence of Mixed Quantum Phases in Spin 1/2 Systems

Arnaud Ralko, Institut Néel, Grenoble.

Aspet, 13 october 2009.

Collaborators

* Didier Poilblanc (LPT Toulouse)
+ Matthieu Mambrini (LPT Toulouse)
* Roderich Moessner (MPI-PKS Dresden)

Scope

+ Introducing Quantum Spin Liquids
+ Rokhsar-Kivelson models: State of the art
+ Connection with microscopic Heisenberg magnetism

Physical Motivations

General scheme of frustrated systems

Frustration:
Mott Insulators

Metals

Doping

Cooling

No magnetic long range order
Shastry \& Sutherland (81)

$$
\begin{array}{ll}
\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle \simeq e^{-\frac{\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}{\xi}} & \text { Even at } \mathbf{T}=\mathbf{0 K} \\
\Delta_{s}=\frac{\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}{\xi / a} & \mathrm{SU}(2) \text { is preserved }
\end{array}
$$

Some examples: $\mathrm{SrCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

Orthogonal dimers

- Bose-condensation of triplets
$\chi(T) \simeq T^{-1 / 2} e^{-\Delta_{s} / T}$
- Static dimer background
- Exotic phases: SF, SS

Spin gap at low T, singlet GS and new bosonic quantum phases!

Rokhsar-Kivelson Models

Effective models derived from microscopic systems

- Heisenberg Rokhsar \& Kivelson (88), Moessner \& Sondhi (01)
- Spin-orbital Vernay, AR, Becca, Mila (06)
- Trimerized Kagomé lattice Zhitomirsky (04)

Rokhsar-Kivelson Models

Effective models derived from microscopic systems

- Heisenberg Rokhsar \& Kivelson (88), Moessner \& Sondhi (01)
- Spin-orbital Vernay, AR, Becca, Mila (06)
- Trimerized Kagomé lattice Zhitomirsky (04)

Quantum Dimer Model: projection onto the singlet subspace

Truncate at the $4^{\text {th }}$ order:
$\langle\varphi \mid \psi\rangle$
ψ
$O_{\phi, \psi}=I d+2 \alpha^{4} A+2 \alpha^{6} B+\cdots$
\Rightarrow Only loop of length 4 !
Sutherland (88)

Rokhsar-Kivelson Models

The Quantum Dimer Model

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle\Omega|)
$$

- v: Potential term
- t4: Kinetic term

Rokhsar-Kivelson Models

The Quantum Dimer Model

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle\Omega|)
$$

- v: Potential term
- t4: Kinetic term

Rokhsar-Kivelson Models

The Quantum Dimer Model

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle\Omega|)
$$

- v: Potential term
- t4: Kinetic term

Rokhsar-Kivelson Models

The Quantum Dimer Model

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle\Omega|)
$$

- v: Potential term
- t4: Kinetic term

Rokhsar-Kivelson Models

The Quantum Dimer Model

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle\Omega|)
$$

- v: Potential term
- t4: Kinetic term

Rokhsar-Kivelson Models

The Quantum Dimer Model

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle\Omega|)
$$

- v: Potential term
- t4: Kinetic term

Rokhsar-Kivelson Models

The Quantum Dimer Model

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle\Omega|)
$$

- v: Potential term
- t4: Kinetic term

\Rightarrow Competition

Rokhsar-Kivelson Models

The Quantum Dimer Model

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|8\rangle\langle 8|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle\Omega|)
$$

- v: Potential term
- t4: Kinetic term

\Rightarrow Competition
$\mathrm{t} 4=\mathrm{v} \Rightarrow \mathrm{RK}$ point: Factorization of the Hamiltonian!

$$
\begin{aligned}
& \mathcal{H}=A^{\dagger} A=(|\Omega\rangle-|00\rangle)(\langle 00|-\langle\Omega|) \\
& \text { GS: } A|\Psi\rangle=0 \Rightarrow|\Psi\rangle=\frac{1}{\sqrt{N}} \sum|c\rangle \Rightarrow \underset{\text { Anderson }(73)}{\text { RVB } \operatorname{liq} i d}
\end{aligned}
$$

Rokhsar-Kivelson Models

The Quantum Dimer Model

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle g|)
$$

- v: Potential term
- t4: Kinetic term

\Rightarrow Competition
$\mathrm{t} 4=\mathrm{v} \Rightarrow \mathrm{RK}$ point: Factorization of the Hamiltonian!

$$
\begin{aligned}
& \mathcal{H}=A^{\dagger} A=(|\sigma\rangle-|00\rangle)(\langle 00|-\langle\Omega|) \\
& \text { GS: } A|\Psi\rangle=0 \Rightarrow|\Psi\rangle=\frac{1}{\sqrt{N}} \sum|c\rangle \Rightarrow \underset{\text { Anderson }(73)}{\mathrm{RVB} \operatorname{liquid}}
\end{aligned}
$$

Rokhsar-Kivelson Models

In a more general ground
Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-t_{4}(|g\rangle\langle 00|+|00\rangle\langle g|)
$$

- Rich phase diagram: Exotic phases, non-conventional behavior

Rokhsar-Kivelson Models

In a more general ground
Rokhsar \& Kivelson (88)

$$
\left.\mathcal{H}=v(\mid G)\langle | \theta|+| 00\rangle\langle 00|)-t_{4}(\mid g)\langle 00|+|00\rangle\langle | \theta \mid\right)
$$

- Rich phase diagram: Exotic phases, non-conventional behavior
- After 20 years, still not a clear answer for the ground state!

Long time conflicting results

For several systems, same studies give \neq results

- Square QDM: Plaquette-Columnar transition point?
- Square Heisenberg AF: Nature of the gapped phase?

Long time conflicting results

For several systems, same studies give \neq results

- Square QDM: Plaquette-Columnar transition point?
- Square Heisenberg AF: Nature of the gapped phase?

Break both translations and $\pi / 2$ rotations

- Effective field theory in term of Height Models
- Microscopic realization on Heisenberg systems

Height representation of the QDM

From RK (classical) to quantum case

- Gauss Law: $\nabla . \mathbf{E}=0$

Henley (03)

- Realized by chosing a good gauge ϕ

$$
\sum \phi=0
$$

- Defining the height variable h: $\mathbf{E}=\nabla \times h$

Height representation of the QDM

From RK (classical) to quantum case

- Gauss Law: $\nabla . \mathbf{E}=0$

Henley (03)

- Realized by chosing a good gauge ϕ

$$
\sum \phi=0
$$

- Defining the height variable h: $\mathbf{E}=\nabla \times h$

1 to 1 mapping between dimers and heights

Height representation of the QDM

From RK (classical) to quantum case

- Gauss Law: $\nabla . \mathbf{E}=0$
- Realized by chosing a good gauge ϕ

$$
\sum \phi=0
$$

- Defining the height variable h: $\mathbf{E}=\nabla \times h$

1 to 1 mapping between dimers and heights

- Columnar: <h>= half integer
- Plaquette: <h> = integer

Height representation of the QDM

Coarse-graining of the h variable

One can obtain a $\mathrm{d}=2+1$ effective field theory:

$$
S=\int d \tau d^{2} x\left[\left(\partial_{\tau} h(r)\right)^{2}+\rho(\nabla h(r))^{2}+\lambda \cos (2 \pi h(r))+\mu \cos (4 \pi h(r))\right]
$$

Height representation of the QDM

Coarse-graining of the h variable

One can obtain a $d=2+1$ effective field theory:

$$
S=\int d \tau d^{2} x \underbrace{\left(\partial_{\tau} h(r)\right)^{2}+\rho(\nabla h(r))^{2}} \lambda \cos (2 \pi h(r))+\mu \cos (4 \pi h(r))]
$$

Height representation of the QDM

Coarse-graining of the h variable

One can obtain a $d=2+1$ effective field theory:

Height representation of the QDM

Coarse-graining of the h variable

One can obtain a $d=2+1$ effective field theory:

New quartic term in the expansion

Height representation of the QDM

Coarse-graining of the h variable

One can obtain a $d=2+1$ effective field theory:

New quartic term in the expansion

Searching for uniform configuration $h=$ cste

- Only the mean value is relevant to distinguich the phases
- Competition between two simple terms:

$$
S \simeq \lambda \cos (2 \pi<h>)+\mu \cos (4 \pi<h>)=0
$$

Height representation of the QDM $S \simeq \lambda \cos (2 \pi<h>)+\mu \cos (4 \pi<h>)=0$

First case: $\mu=0$ (old case)

- $\lambda>0:<h>=$ half integer
- $\lambda<0:<h>=$ integer
- $\lambda=0:\langle h>=\forall$

Columnar
Plaquette
Continuous deg.

Height representation of the QDM $S \simeq \lambda \cos (2 \pi<h>)+\mu \cos (4 \pi<h>)=0$

First case: $\mu=0$ (old case)

- $\lambda>0:<h>=$ half integer
- $\lambda<0:<h>=$ integer
- $\lambda=0:\langle h>=\forall$

Columnar
Plaquette
Continuous deg.

Second case: $\mu \neq 0$

- $\mu<0$: lift of the continuous deg. $1^{\text {st }}$ order transition scenario
- $\mu>0$:Competition!
$2 \pi h= \begin{cases}0, & \text { if } \lambda<-4 \mu \\ \pi, & \text { if } \lambda>4 \mu \\ \arccos (-\lambda / 4 \mu), & \text { if }|\lambda|<4 \mu\end{cases}$

Height representation of the QDM $S \simeq \lambda \cos (2 \pi<h>)+\mu \cos (4 \pi<h>)=0$

First case: $\mu=0$ (old case)

- $\lambda>0:<h>=$ half integer
- $\lambda<0:\langle h\rangle=$ integer
- $\lambda=0:\langle h>=\forall$

Columnar
Plaquette
Continuous deg.

Second case: $\mu \neq 0$

Mixed phase!

- $\mu<0$: lift of the continuous deg. $1^{\text {st }}$ order transition scenario
- Continuous extrapolation
- $2^{\text {nd }}$ order phase transition
- $\mu>8:$ Competition!
$2 \pi h= \begin{cases}Q & \text { if } \lambda<-4 \mu \\ \pi, & \text { if } \lambda>4 \mu \\ \arccos (-\lambda / 4 \mu), & \text { if }|\lambda|<4 \mu\end{cases}$

Mixed phase in Heisenberg systems

A Generalized QDM for the square Heisenberg AF

Attempting to characterize spin- $1 / 2$ systems with RK models

Only for specific values of $\mathrm{J}_{1}-\mathrm{J}_{2}-\mathrm{J}_{3}$

$$
\mathcal{H}=J_{1} \sum_{n n} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+J_{2} \sum_{n n n} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+J_{3} \sum_{n n n n} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

When the true GS is made of dimer coverings

Mixed phase in Heisenberg systems

New systematic procedure for deriving effective models

Processes	\mathcal{O}	\mathcal{H}	$\mathcal{H}^{\text {eff }}=\mathcal{O}^{-1 / 2} \mathcal{H} \mathcal{O}^{-1 / 2}$
Id	1	0	0
\square	\emptyset	\emptyset	$2\left(J_{1}-J_{2}\right) \alpha^{4}$
\square	α^{2}	$2\left(-J_{1}+J_{2}\right) \alpha^{2}$	$-2\left(J_{1}-J_{2}\right) \alpha^{2}\left(1+\alpha^{4}\right)$
\square	α^{4}	$2\left(-2 J_{1}+2 J_{2}+J_{3}\right) \alpha^{4}$	$2\left(-J_{1}+J_{2}+J_{3}\right) \alpha^{4}$
$\square \square$	α^{4}	$4\left(-J_{1}+J_{2}\right) \alpha^{4}$	0
$\square \square$	α^{6}	$2\left(-3 J_{1}+3 J_{2}+J_{3}\right) \alpha^{6}$	0
$\square \square$	α^{6}	$2\left(-3 J_{1}+3 J_{2}+2 J_{3}\right) \alpha^{6}$	$2\left(-J_{1}+J_{2}+J_{3}\right) \alpha^{6}$
\square	α^{6}	$2\left(-3 J_{1}+3 J_{2}+2 J_{3}\right) \alpha^{6}$	$\left(-J_{1}+J_{2}+2 J_{3}\right) \alpha^{6}$
$\square \square$	α^{6}	$2\left(-J_{1}+J_{2}\right) \alpha^{6}$	0
$\square \square \square$	\emptyset	\emptyset	$\left(J_{1}-J_{2}-J_{3}\right) \alpha^{6}$
$\square \square \square$			
$\square \square$			

We reorganize the overlap expansion in term of same prefactors

Mixed phase in Heisenberg systems

New systematic procedure for deriving effective models

Processes	\mathcal{O}	\mathcal{H}	$\mathcal{H}^{\text {eff }}=\mathcal{O}^{-1 / 2} \mathcal{H} \mathcal{O}^{-1 / 2}$
Id	1	0	0
\square	\emptyset	\emptyset	$2\left(J_{1}-J_{2}\right) \alpha^{4}$
\square	α^{2}	$2\left(-J_{1}+J_{2}\right) \alpha^{2}$	$-2\left(J_{1}-J_{2}\right) \alpha^{2}\left(1+\alpha^{4}\right)$
\square	α^{4}	$2\left(-2 J_{1}+2 J_{2}+J_{3}\right) \alpha^{4}$	$2\left(-J_{1}+J_{2}+J_{3}\right) \alpha^{4}$
$\square \square$	α^{4}	$4\left(-J_{1}+J_{2}\right) \alpha^{4}$	0
$\square \square$	α^{6}	$2\left(-3 J_{1}+3 J_{2}+J_{3}\right) \alpha^{6}$	0
\square	α^{6}	$2-3 J^{6}+3 J^{2}$	J^{6}
\square	α^{6}	$2\left(-3 J_{1}+5 J_{2}+2 J_{3}\right) \alpha^{6}$	$\left(-J_{1}+J_{2}+2 J_{3}\right) \alpha^{6}$
\square	0		
$\square \square \square$	α^{6}	$2\left(-J_{1}+J_{2}\right) \alpha^{6}$	0
$\square \square$	\emptyset	\emptyset	$\left(J_{1}-J_{2}-J_{3}\right) \alpha^{6}$
\square			

We reorganize the overlap expansion in term of same prefactors

Mixed phase in Heisenberg systems

New systematic procedure for deriving effective models

Processes	\mathcal{O}	\mathcal{H}	$\mathcal{H}^{\text {eff }}=\mathcal{O}^{-1 / 2} \mathcal{H} \mathcal{O}^{-1 / 2}$
Id	1	0	0
\square	\emptyset	\emptyset	$2\left(J_{1}-J_{2}\right) \alpha^{4}$
\square	α^{2}	$2\left(-J_{1}+J_{2}\right) \alpha^{2}$	$-2\left(J_{1}-J_{2}\right) \alpha^{2}\left(1+\alpha^{4}\right)$
\square	α^{4}	$2\left(-2 J_{1}+2 J_{2}+J_{3}\right) \alpha^{4}$	$2\left(-J_{1}+J_{2}+J_{3}\right) \alpha^{4}$
$\square \square$	α^{4}	$4\left(-J_{1}+J_{2}\right) \alpha^{4}$	0
$\square \square$	α^{6}	$2\left(-3 J_{1}+3 J_{2}+J_{3}\right) \alpha^{6}$	0
\square	α^{6}	$2-3 J_{1}+3 J_{2}+J^{6}$	
\square	α^{6}	$2\left(-3 J_{1}+J_{2}+2 J_{3} \alpha^{6}\right.$	$\left(-J_{1}+J_{2}+2 J_{3}\right) \alpha^{6}$
$\square \square$	α^{6}	$2\left(-J_{1}+J_{2}\right) \alpha^{6}$	0
$\square \square \square$	\emptyset	\emptyset	$\left(J_{1}-J_{2}-J_{3}\right) \alpha^{6}$
$\square \square$	\square		
\square			

Mixed phase in Heisenberg systems

New systematic procedure for deriving effective models

Processes	\mathcal{O}	\mathcal{H}	$\mathcal{H}^{\text {eff }}=\mathcal{O}^{-1 / 2} \mathcal{H O}^{-1 / 2}$
Id	1	0	0
\square	\emptyset	\emptyset	$2\left(J_{1}-J_{2}\right) \alpha^{4}$
$\square \square$	α^{2}	$2\left(-J_{1}+J_{2}\right) \alpha^{2}$	$-2\left(J_{1}-J_{2}\right) \alpha^{2}\left(1+\alpha^{4}\right)$
\square	α^{4}	$2\left(-2 J_{1}+2 J_{2}+J_{3}\right) \alpha^{4}$	$2\left(-J_{1}+J_{2}+J_{3}\right) \alpha^{4}$
$\square \square$	α^{4}	$4\left(-J_{1}+J_{2}\right) \alpha^{4}$	0
$\square \square$	α^{6}	$2\left(-3 J_{1}+3 J_{2}+J_{3}\right) \alpha^{6}$	0
\square	α^{6}	$2-3 J_{1}+3 J_{2}+J^{6}$	$\left(-J_{1}+J_{2}+2 J_{3}\right) \alpha^{6}$
\square	α^{6}	$2\left(-3 J_{1}+J_{2}+2 J_{3} \alpha^{6}\right.$	$\left(-J_{3}\right) \alpha^{6}$
\square	α^{6}	$2\left(-J_{1}+J_{2}\right) \alpha^{6}$	0
$\square \square \square$	\emptyset	$\left(J_{1}-J_{2}-J_{3}\right) \alpha^{6}$	
$\square \square$	\emptyset		
\square			

$$
\mathcal{H}=\underbrace{\cos (\phi) \sin (\theta)}_{v} \square \square+\underbrace{\cos (\phi) \cos (\theta)}_{t_{4}} \square+\underbrace{\sin (\phi)}_{t_{6}} \square
$$

Kinetic competition between loop- 4 and loop- 6

Mixed phase in Heisenberg systems

Symmetry classification of the expected phases

	Γ, A_{1}	Γ, B_{1}	$\mathrm{M}, \mathrm{A}_{1}$	$\mathrm{~K}, \mathrm{~A}_{1}$	$\mathrm{~K}, \mathrm{~B}_{1}$	$\mathrm{M}, \mathrm{A}_{1}{ }^{*}$
Columnar	X	X	X			
Plaquette	X		X	X		
Mixed	X	X	X	X	X	X

Mixed phase in Heisenberg systems

Symmetry classification of the expected phases

	Γ, A_{1}	Γ, B_{1}	$\mathrm{M}, \mathrm{A}_{1}$	$\mathrm{~K}, \mathrm{~A}_{1}$	$\mathrm{~K}, \mathrm{~B}_{1}$	$\mathrm{M}, \mathrm{A}_{1}{ }^{*}$
Columnar	X	X	X			
Plaquette	X		X	X		
Mixed	X	X	X	X	X	X

- One has to access the correct symmetry sectors
- P+ operator
- P- operator

$$
\begin{aligned}
P_{ \pm} & =d_{i} d_{j} \pm d_{k} d_{l} \\
d_{i} & = \begin{cases}1 \text { if a dimer } \\
0 \text { if not }\end{cases}
\end{aligned}
$$

Mixed phase in Heisenberg systems

Symmetry classification of the expected phases

	Γ, A_{1}	Γ, B_{1}	$\mathrm{M}, \mathrm{A}_{1}$	$\mathrm{~K}, \mathrm{~A}_{1}$	$\mathrm{~K}, \mathrm{~B}_{1}$	$\mathrm{M}, \mathrm{A}_{1}{ }^{*}$
Columnar	X	X	X			
Plaquette	X		X	X		
Mixed	X	X	X	X	X	X

Numerical computation of the energy and the structure factors

- Exact Diagonalizations
- Green Function Quantum Monte-Carlo

Mixed phase in Heisenberg systems

Eigen energy spectra by exact diagonalizations

- Rather large cluster size
- All symmetry sector available
- The whole range of parameter accessible

Mixed phase in Heisenberg systems

Eigen energy spectra by exact diagonalizations

- Rather large cluster size
- All symmetry sector available
- The whole range of parameter accessible

Mixed phase in Heisenberg systems

Eigen energy spectra by exact diagonalizations

- Rather large cluster size
- All symmetry sector available
- The whole range of parameter accessible

Mixed phase in Heisenberg systems

Eigen energy spectra by exact diagonalizations

Need to go beyond the size effects Green Function Quantum Monte Carlo

- Thermodynamic limit by finite size scaling
- Computation of the structure factor

Mixed phase in Heisenberg systems

Structure factor in different symmetry sectors

$M_{ \pm}=\frac{1}{L} \sqrt{\frac{\left\langle\Psi_{0}\right| P_{ \pm}(-q) P_{ \pm}(q)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle}}$

- Large sizes, 16×16 sites
- M+: Plaquette order
- M-: Columnar order

Mixed phase in Heisenberg systems

Structure factor in different symmetry sectors

$M_{ \pm}=\frac{1}{L} \sqrt{\frac{\left\langle\Psi_{0}\right| P_{ \pm}(-q) P_{ \pm}(q)\left|\Psi_{0}\right\rangle}{\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle}}$

- Large sizes, 16×16 sites
- M+: Plaquette order
- M-: Columnar order

- In a large domain, both M_{+}and M_{-}are non zero

Mixed phase driven by kinetic competition

- Tiny region where $M_{+}=0$ and M_{-}non zero

A pure plaquette phase is also present

Mixed phase in Heisenberg systems

Phase diagram at the thermodynamic limit

$$
\mathcal{H}=\underbrace{\cos (\phi) \sin (\theta)}_{v} \square \square+\underbrace{\cos (\phi) \cos (\theta)}_{t_{4}} \square+\underbrace{\sin (\phi)}_{t_{6}} \square
$$

Mixed phase in Heisenberg systems

Phase diagram at the thermodynamic limit

Mixed phase in Heisenberg systems

Phase diagram at the thermodynamic limit

The microscopic singlet line lies in the mixed phase domain
First time that a mixed phase is observed in a microscopic spin- $1 / 2$ system AR, M. Mambrini \& D. Poilblanc, arXiv:0905.2039, to appear in PRB

Summary and Concluding Remarks

1- New kind of quantum spin liquid state has been evidenced
2- Rokhsar-Kivelson models: best candidates for these studies
3- New way of deriving effective constraint model
4- Application to an old conflicting system gives new insights
\Rightarrow As in the ODM, the mixed phase scenario reconciliates previous conflicting results

Outlook

Find such phases in other systems: Kagomé AFM?

